MicroBlaze Development Kit
Tutorial

MicroBlaze Development Kit Tutorial

MicroBlaze Development Kit Tutorial

X ®
“Xilinx” and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted
herein are reserved.

CoolRunner, RocketChips, RocketlP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090,
XC4005, and XC5210 are registered trademarks of Xilinx, Inc.

&

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable
Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap,
Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze,
PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCl, Rocket I/O, Selectl/O, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap,
UIM, VectorMaze, VersaBlock, VersaRing, Virtex-l PRO, Wave Table, WebFITTER, WebPACK,
WebPOWERED, XABEL, XACT-Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry,
XAM, XAPP, X-BLOX +, XC designated products, XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx
XDTV, Xinfo, XSI, XtremeDSP, and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or information shown
or described herein "as is." By providing the design, code, or information as one possible implementation of a
feature, application, or standard, Xilinx makes no representation that such implementation is free from any claims
of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx
expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including
but not limited to any warranties or representations that the implementation is free from claims of infringement, as
well as any implied warranties of merchantability or fithess for a particular purpose. Xilinx, Inc. devices and
products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent
that devices shown or products described herein are free from patent infringement or from any other third party
right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of
any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. © Copyright 1994-2002 Xilinx, Inc. All Rights
Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic,
mechanical, photocopying, recording or otherwise, without the prior written consent of Xilinx. Any unauthorized
use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statues.

i Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
most conventions.

Typographical

The following conventions are used for all documents.

Couri er font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

Couri er bol dindicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt _del _net=

Couri er bol d also indicates commands that you select from a
menu.

File - QOpen
Italic font denotes the following items.

¢ Variables in a syntax statement for which you must supply
values

edi f 2ngd desi gn_nane
+ References to other manuals

See the Development System Reference Guide for more
information.

MicroBlaze Development Kit Tutorial iii

MicroBlaze Development Kit Tutorial

¢+ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f 2ngd [option_nane] desi gn_nane

Braces “{ }”” enclose a list of items from which you must choose
one or more.

| owpwr ={on| of f}
A vertical bar “]” separates items in a list of choices.
| owpwr ={on| of f}

A vertical ellipsis indicates repetitive material that has been
omitted.

| OB #1: Name = QOUT’
| OB #2: Name = CLKIN

A horizontal ellipsis “...” indicates that an item can be repeated
one or more times.

al I ow bl ock block _name locl loc2 ... locn;

Online Document

The following conventions are used for online documents.

Blue text indicates cross-references within a book. Red text
indicates cross-references to other books. Click the colored text to
jump to the specified cross-reference.

Blue, underlined text indicates a Web site. Click the link to open
the specified Web site. You must have a Web browser and internet
connection to use this feature.

Xilinx Development System

MDK Tutorial

This tutorial introduces you to designing with the MicroBlaze™ soft
processor. It walks you through the steps required to build a
MicroBlaze system using the MicroBlaze Development Kit (MDK) 2.2
flow and the Hello World tutorial design.

The Hello World design is provided to help you understand the basic
steps in creating your own MicroBlaze system. The Hello World
design is a simple design that only requires a JTAG_UART hardware
peripheral. In this tutorial, this design is compiled with a debugging
stub, the executable is loaded into memory, and the design is run
through the hardware debugger to verify its functionality. To help
you understand the basic steps in creating a MicroBlaze system,
conceptual information is provided before each step is performed.

In this tutorial, you will learn how to do the following :
» Build both the hardware and software for the Hello World design

* Run the hardware and simulator debuggers on the Hello World
design

« Simulate the Hello World design

e Use the ISE tools to implement and download the Hello World
design

This tutorial includes the following sections:

e “System Requirements”

e “MicroBlaze Development Tool Flow Overview”
« “Defining the Hello World Hardware”

« “Defining the Hello World Software”

* “Debugging the Hello World Design”

MicroBlaze Development Kit Tutorial 1

MicroBlaze Development Kit Tutorial

» “Simulating the Hello World MicroBlaze System
» “Potential Pitfalls”

» “Revision History”

System Requirements
Note MDK 2.2 does not support WebPACK.
The Hello World design runs on nearly all hardware systems.
You must be running iSE 4.2i and MDK 2.2.

This tutorial assumes that the target hardware board contains at least
a Spartan-I1, Spartan-lIE, Virtex, Virtex-E or Virtex-11 device along
with a JTAG interface.

2 Xilinx Development System

MDK Tutorial

MicroBlaze Development Tool Flow Overview

The MicroBlaze Development Tool (MDT) flow automates the
MicroBlaze system building process. The following figure illustrates
the steps in the MDT flow:

Xilinx Software IDE

Software Flow

Library MSS File
Generator system.mss

|
I
I
I
I
I
I
I
I
I
Hardware Flow | (* mb_io.h, libc, libm,
| \ and peripheral drivers
|
I
I
I
I
I
|
I
I

MicroBlaze IP ;
MHS File mb-gcc C Source
system.mhs program.c
I !

Platform Generator program.out
I

Core and IP Netlists,
VHDL wrapper

MPD Files

un ' |
»,
=

Synthesis
Tool

Xilinx
Implementation system.edf
Tools

(system.ucf) (system.bit

!

Hardware

|

X9806

Figure 1-1 MDT Flow Diagram

MicroBlaze Development Kit Tutorial 3

MicroBlaze Development Kit Tutorial

The following steps provide a general description of the MDT flow:

1.

Define your hardware and software systems using the
Microprocessor Hardware Specification (MHS) and
Microprocessor Software Specification (MSS) readable text files.

Use the hardware and software system definition files to build
the MicroBlaze system automatically. This step includes
integrating the MicroBlaze core and appropriate peripherals, and
creating custom-built C libraries and drivers.

The Platform Generator and Library Generator tools
automatically set up the respective hardware and software for
your system. The hardware and software flows are separate to
allow for the hardware flow to take place as the software is being
developed.

Once your system software is defined, use the Library Generator
to build system-specific library C functions that map basic C
functions (print, putnum, and so on) to peripherals and to
configure the C libraries. Then use the mb-gcc compiler to
compile your source code.

Use the Platform Generator to build the hardware files, which
include the system netlists and HDL code, BlockRAM netlists
initialized with the program code, and synthesis project files and
simulation files.

Defining the Hello World Hardware

A MicroBlaze system is comprised of the following:

MicroBlaze soft processor core
On-chip block RAM
Standard bus interconnects

On-chip Peripheral Bus (OPB) peripherals

A MicroBlaze system can range from a processor core with a
minimum of local memory to a large system with many MicroBlaze
processors, sizable external memory, and numerous OPB peripherals.
This section of the tutorial describes how to set up the MicroBlaze
system hardware for the Hello World design.

Xilinx Development System

MDK Tutorial

Using the MHS File

The MicroBlaze hardware system is defined in a text-based
Microprocessor Hardware Specification (MHS) file that is created by
you. This file includes the following:

e Peripherals

* One of six MicroBlaze bus configurations
e System connectivity

e Address spacing

The MicroBlaze hardware is built around the On-chip Peripheral Bus
(OPB), which is a CoreConnect™ peripheral bus standard developed
by IBM. Each peripheral connected to the OPB is declared in the MHS
file, including the MicroBlaze processor. Essentially the MicroBlaze
processor is a master peripheral connected to the OPB.

Note For more information on the OPB standard, refer to the OPB
Usage section of the MicroBlaze Hardware Reference Guide. For more
information on the CoreConnect standard, see:

http://www.xilinx.com/xInx/xil_prodcat_product.jsp?iLanquagelD=1&iCountry-
ID=1&title=coreconnect

You can set all of your system hardware parameters in this file,
including the following:

* Memory space for each peripheral (including MicroBlaze)
e IP version

* Interrupt connectivity and priority

» Peripheral-specific settings

» Signal connectivity.

Hello World MHS File

The MHS file in Figure 1-2 describes the hardware used in the Hello
World design example. The Hello World system hardware contains a
JTAG_UART peripheral and uses the MicroBlaze bus configuration 3.

MicroBlaze Development Kit Tutorial 5

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?iLanguageID=1&iCountryID=1&title=coreconnect

MicroBlaze Development Kit Tutorial

To create the Hello World MHS file, perform the following steps:

1. Create a design directory on your system with the following
name:

Hello_World

2. Copy the contents of the MHS file in Figure 1-2 into a file with the
following name, and save it to the Hello_World directory:

system.mhs

SELECT BUS opb_v20

CSET attribute HWVER = 1.00.b
CSET attribute | NSTANCE = opb_bus
CSET signal SYS Rst = sys_reset
END

SELECT SLAVE opb_jtag uart

CSET attribute I NSTANCE = nyjtag
cset attribute HWVER = 1.00.b
CSET attribute C_BASEADDR
CSET attribute C_H GHADDR
END

xFFFF8000

=0
= OxFFFF80f f

SELECT MASTER ni crobl aze
CSET attribute | NSTANCE = mi crobl aze
cset attribute HWVER = 1.00.b

CSET attribute CONFI GURATION = 3

CSET attribute C LM BASEADDR = 0x00000000
CSET attribute C_ LM H GHADDR = 0x00000f f f
END

SET signal SD = net_vcc

SET signal EN = net_gnd

Figure 1-2 Sample MHS file

For a complete listing of attributes and signals for each peripheral,
review the MPD file associated with that peripheral. The MPD files
are located here:

$M CROBLAZE/ hwi/ cor egen/i p/ xi | i nx/ m crobl aze_pcores/ conm xi |l i nx/i p2
processor/

6 Xilinx Development System

MDK Tutorial

Note For more information on the MPD and MHS files, refer to the
MPD and MHS sections of the MicroBlaze Hardware Reference Guide.

Defining the Hello World Software

This section describes how to set up the MicroBlaze system software
for the Hello World example using an MSS file.

Using Xilinx Microprocessor Software IDE (XSI)

Utility

MDK 2.2 includes the Xilinx Microprocessor Software IDE (XSI)
utility. This new utility provides an integrated graphical interface for
creating the software system. From within XSI, you can run the
software tools (such as the Library Generator and the GNU compiler
tools) while specifying the software system (this is equivalent to
building the MSS file). XSl requires a pre-designed MHS file as input.
XSI provides the following:

Editor and a project management interface for creating and
editing source code

Access to run Platform Generator tool, although it does not
currently offer a complete hardware system design tool

To create a new XSI project, use the following steps:

1.

From the Windows Start Menu, open the XSI utility by selecting:

Programs - Xilinx McroBlaze 2.2 - McroBl aze
| DE

Using the MHS file created earlier, create a new project by
selecting:

File - New Project

The Create New Project dialog box is displayed as shown in the
following figure.

MicroBlaze Development Kit Tutorial

MicroBlaze Development Kit Tutorial

Create Mew Project = il

— Mew Project
Fraoject File IE:'awu:urking"xtutcurial'xs_ustem.:-:mp Browse . |
MHS File toimport II::'awu::rking'xtutcurial'xs_ustem.mhs Browse .. |
The project file contains complete information about vour project.

The project file will be created in the current directory i a path iz not specified.
]

— Project Options

architecture Spartanz

k. I Cancel

Figure 1-3 Creating a New Project in XSI

3.

In the MHS File to import field, use the Browse button to find the
MHS file created earlier.

Name the project in the Project File field

Select the target architecture from the pull-down menu in the
Architecture field.

Note If an MSS file already exists in the project directory, you are
prompted to overwrite the MSS file. To save this file, rename it or
move it to another directory because XSI will delete it. If you chose to
use the existing MSS file, XSI assumes all of the MSS options set in
that file.

6.

Once the project is created, you can modify or create the source
code. To add source code to the project from within XSlI, select the
following:

Project - Add Files

All headers and source files are listed in the project console on the
left. Also, the hardware system is listed with the corresponding
address space, as well as program options.

Xilinx Development System

MDK Tutorial

7. For the Hello World example, a simple C design is used that
prints to STDOUT, as shown in the following figure:

#i ncl ude <stdi o. h>

mai n() {
int i ;
print("Hello World\n");
put nun{i);

}

Figure 1-4 Hello World Example C Design
8. Create a new C source file by selecting:
File - New

9. Copy the example Hello World C design or a similar one of your
own. (It should output a character string using the “print”
command or an integer using the “putnum” command.)

10. Create a /code directory in your Hello World design directory.
XSl expects the file to reside in the /code directory so save the file
in that directory.

11. Add the C source you just created to the project by selecting:
Project - Add Files

See the following figure.

MicroBlaze Development Kit Tutorial 9

MicroBlaze Development Kit Tutorial

10

Add C,h Files to the current project i . :] E]
Lok jr: | {24 code x| e Bk B
File name: — |system.c Open
Files of bype: |C and Header files [*.c, *.h) ;I Cancel .
4

Figure 1-5 Adding C Source File in XSI

12. After the file is added, the source file appears in the Project View
Window on the right under Sources. Also, the MHS settings
appear under each peripheral (such as the BASE and HIGH
address settings).

Note In the MDK 2.2 version of XSI, all of the hardware settings in
the MHS file (peripheral base address, and so on) are not modifiable
in XSI. To change these values, you can modify the MHS file outside
of XSl and then reload it into the XSI project.

Defining the Hello World Design Software

Once the source has been created and added to the project, you can
define the software system. From within XSI, you can set the Library
Generator options as follows:

e Select STDIN/STDOUT peripherals
* Map peripherals to the appropriate drivers
» Set software attributes

« Set boot and debug options

Xilinx Development System

MDK Tutorial

» For peripherals that generate an interrupt, map the interrupt
handler function to the peripheral

Note For more information on the Library Generator, refer to the
Library Generator section of the MicroBlaze Software Reference Guide.

To set the Library Generator options in XSI, follow these steps:

1. Toselect the STDIN/STDOUT peripheral, double-click Program
Options in the Project View Window. The Program Options
dialog box is displayed as shown in the following figure.

Program Options I X|

— Tupe the penpheral instance aszociated with

Boot Peripheral |

Ciebug Penpheral Im-"'itag

Standard |nput |m_l,litag

Lef Lef Lef Lo

Standard Output Il'ﬂ_'r'itag

— Program File Mames uzed in modes

Erecutable I-:l:u:le.-’system.-:nut
#MDstub In:u:ude.-’:-:mdstub.u:uut

Boatstrap In:u:u:le.-"bu:n:utstul:u. out

] I Cancel

Figure 1-6 Setting Program Options

You can use this dialog box to select peripherals for the
following:

+ Boot Peripheral
¢+ Debug Peripheral
¢+ Standard Input
¢+ Standard Output

You can also select the Executable, XMDstub and Bootstrap files.

MicroBlaze Development Kit Tutorial 11

MicroBlaze Development Kit Tutorial

2. Inthe Program Options dialog box, select myjtag for the Boot and
Debug Peripheral and for Standard Input and Standard Output.

Peripheral Options

In the Peripheral Options window, the driver and driver version are
selectable. To access the peripheral options, double-click the
peripheral name under System BSP in the Project View window.

If the peripheral is capable of generating an interrupt, you can enter
the name of the Interrupt Handler. The peripheral must have the
interrupt signal set in the MHS file for an Interrupt Handler to be
selectable in XSI. Otherwise, the Peripheral Configuration section of
the Peripheral Options window is greyed out. Interrupts are not used
in the Hello World example. No changes from the default settings
need to be made for the Hello World design.

Setting the Hello World XSI Project Mode

You can run a MicroBlaze project in one of the following modes:
* Executable

This is the default mode. Use this mode to generate a stand-alone
executable program.

* Bootstrap

Use this mode when to use a bootstrap program to load your
program.

XMDstub
Use this mode to run debugging on your hardware target.

1. Use the following command to select your project mode in XSI:
Project - Set Project Options

The Set Project Options dialog box is displayed as shown in the
following figure.

12 Xilinx Development System

MDK Tutorial

Set Project Options |

Project Options
rMode——

™ Executable

| Auchitecture |SpartanZ =]

" Bootstrap

k. I Cancel

Figure 1-7 Setting Project Options
2. Set the Mode to XMDst ub, and click OK.

Building the Hello World Design Drivers and C
Libraries

The next step in building your Hello World system is using the
Library Generator to create the system drivers and C libraries.

The Library Generator is invoked through XSl and performs the
following functions:

o Compiles Peripheral Drivers

The Library Generator searches the SMICROBLAZE/driver
directory for driver source files using the DRIVER attribute for
the directory name. In the driver directory are the C driver
source, header files, and a makefile for the driver. The Library
Generator then copies this directory over to the
$MICROBLAZE_PROJECT/libsrc directory and runs a makefile
to compile the drivers.

For the Hello World design, the JTAG_UART drivers are copied
over into the project /lib directory.

* Creates Header File

The Library Generator creates the mbio.h header file and places it
in the SMICROBLAZE_PROJECT /include directory. This file

MicroBlaze Development Kit Tutorial 13

MicroBlaze Development Kit Tutorial

14

contains the base address and interrupt masks for each
peripheral.

For the Hello World design, the JTAG_UART base addresses are
added to the mbio.h file.

Sets up STDIN/STDOUT

The Library Generator sets up the STDIN/STDOUT for your
system using the STDIN and STDOUT attributes in the MSS file
and the INBYTE and OUTBYTE attributes in the Microprocessor
Peripheral Definition (MPD) file. A peripheral can only be used
for system STDIN/STDOUT if the corresponding INBYTE/
OUTBYTE attributes are set in the MPD file.

If a peripheral is set with STDIN/STDOUT attributes, the Library
Generator uses the peripheral’s inbyte.c and outbyte.c functions
in the C libraries. Consequently, any function that is dependent
on inbyte() or outbyte() functions (such as print, get, printnum,
and so on) maps to that peripheral. If the base address of any
peripheral is changed, the Library Generator must be run again.

For the Hello World design, the JTAG_UART peripheral is
mapped to Standard Input and Standard Output.

Maps Interrupt Routines

The Library Generator maps interrupt routines to a particular
interrupt signal. In the MSS file, the INT_HANDLER attribute
allows an interrupt handler routine to be associated with an
interrupt signal. The Library Generator uses this attribute to
configure the interrupt controller (in the case of multiple
interrupts) to call the appropriate interrupt routines on an
interrupt. If INT_HANDLER attribute is not specified, the
Library Generator uses a default dummy handler routine for that
interrupt.

Interrupt Routines are not used in the Hello World design.

Running Library Generator in XSI

Note For more information on running the Library Generator, refer to
the Library Generator section of the MicroBlaze Software Reference
Guide.

Xilinx Development System

MDK Tutorial

To run the Library Generator on the Hello World design in XSI, select
the following:

Run - Li brary Generator
The results appear in the Console Window.

Note The current version of XSl does not check for dependencies.
You are responsible for invoking programs in the proper order.

Compiling the Hello World Code

After the drivers and C libraries are generated, the next step is to
compile the source code using the MicroBlaze GNU tools. These tools
are very similar to the standard GNU toolset. The MicroBlaze GNU
tools include the top-level GNU program mb-gcc, which calls out the
compiler, the mb-as assembler, and the mb-Id linker/loader. You
invoke the GNU tools through XSI.

Running GNU Tools in XSI

1. Toselect GNU compiler options, select the following:

Run - Select Options - Compiler Options

MicroBlaze Development Kit Tutorial 15

MicroBlaze Development Kit Tutorial

The Set Compiler Options dialog box is displayed as shown here;

Set Compiler Options

General Corpiler ! Directnriesl Other I

— O ptinization Parameters

O ptimization Lewel

Lewel 2 iz the most optinmized lewel

T Use Global Paointer Dptimization

I Usze Hardware kMultiplier (only an Wirke= 1]

— Debug Options
" Do hot generate debug symbols

i* Create symbols for debugaging [-g option]

i Generate ztabs information [-gztabs]

(0] I Cancel I] L)

Figure 1-8 Setting Compiler Options
2. Browse through the compiler options.

3. Under the Compiler tab, set the Debug Options to Create
symbols for debugging (-g option). This option inserts debug
information into the executable file.

4. Compile the Hello World code by selecting:
Run - Conpil er
The results appear in the Console Window.

Note For more information on these and other options for the GNU
tools, see the Software Application Development Tools - GNU
Compiler Tools section of the MicroBlaze Software Reference Guide.

16 Xilinx Development System

MDK Tutorial

Building the Hello World Hardware System using
Platform Generator

After the MHS file is created and the software is compiled using the
Library Generator and GNU tools, the next step is to combine the
hardware and software flows. The Platform Generator uses the MHS
system description to construct the following hardware files for the
MicroBlaze system:

* IP and MicroBlaze netlists

» BlockRAM memories configured with the program information
* Synthesis project files

* Simulation HDL files

The Platform Generator then ties the system together by generating a
flattened netlist, or by creating it hierarchically using VHDL wrapper
files. You can invoke the Platform Generator in XSI.

Running Platform Generator in XSI

To run Platform Generator on the Hello World design in XSlI, select
the following:

Run - XM
The results appear in the Console Window in XSI.

The XSI call to Platform Generator assumes the “-flat” and “-s 2”
options. The “-flat” option specifies that a flattened EDIF netlist of the
Hello World design is produced. The “-s 2” option specifies that XST
is used as the synthesis tool. In the MDK 2.2 version of XSI, Platform
Generator is only partially supported. If you want to change these
options, you can either run Platform Generator from the command
line or modify the Platform Generator section of the flow mode.opt file
in the XSI project directory.

The current version of XSI does not check for flow dependencies.
Consequently, if a change is made in one part of the flow that affects
later steps in the flow, you must run all steps again.

Note For more information on using the Platform Generator tool, see
the Microprocessor Development Tools (MDT) Flow - Platform
Generator section of the MicroBlaze Software Reference Guide.

MicroBlaze Development Kit Tutorial 17

MicroBlaze Development Kit Tutorial

Implementing the Hello World Design

Once a netlist for the Hello World design is created, it can be
implemented in the ISE tools and downloaded to the device.

Note For more information on using ISE, refer to the ISE online help
available from the Help menu within Project Navigator, and to the
online ISE 4 User Guide at:

http://toolbox.xilinx.com/docsan/xilinx4/pdf/docs/xug/xuq.pdf

1.

18

Open the ISE Project Navigator and start a new Project by
selecting:

File - New Project

Select the appropriate Device Family, Device, and Speed Grade
settings.

Select the EDIF design flow and name the project.
Add the Hello World design netlist by selecting:
Proj ect - Add Source

Browse to the netlist generated from XSl (all netlists generated by
Platform Generator reside in the SMICROBLAZE_PROJECT/
implementation directory.) Add the netlist to your project. Note
that it is now listed under the Sources in Project window on the
upper right-hand side.

Before you can implement the design, you must enter a few
constraints as follows:

a) Within the Project Navigator, you can launch the Xilinx
Constraints Editor from the Processes window. You must
have a design file selected in the Sources window. Then
double-click Constraints Editor in the Processes window,
which is located within User Constraints underneath Design
Utilities. The Constraints Editor is shown in the following
figure.

Xilinx Development System

http://toolbox.xilinx.com/docsan/xilinx4/pdf/docs/xug/xug.pdf

MDK Tutorial

i ki I ot e ik 5 Bl - [loSall - spstemongd | wpstemmal]

Fila P Vew Sodew Help

Dijk|@f %] =|=|0lr] T

Chisch et Bamis Faruesi Padl 3 Tentusp i Cleck in Pad
(| mwiing_drck
ety _updais
opt_rh] Wtr G T R
Pl Pl | |—
Gobd | P | ddeweoed | e |
) ﬂ
TIFESFEC “T5_oph_ok™ = FERKND "oph ok B0 MEE
T “ape e LORC @ T DT
P "oph k" (00 = PERT j

-Uﬁl'l.'.-“n_-—| rl.h:"l'El'\n'-tr-lm| Somrs Carcinene: el s |]

P Hadp, pramm FI

Figure 1-9 Entering Clock Speed Constraints

b) Specify a timing constraint for the system clock that matches
the speed of the board clock. Check the documentation for
your board for the board clock speed.

c) Specify the OPB_CLK and SYS_RESET pins in the design.
The SYS_RESET on MicroBlaze is active high and must be
connected to an appropriate driver. Check the
documentation for your board for the clock and reset pins.

d) Save the constraints and return to the Project Navigator.

MicroBlaze Development Kit Tutorial 19

MicroBlaze Development Kit Tutorial

7. To change StartUp Clock to JTAG CLK, perform these steps:

a) Right click on Generate Programming File in the Processes
Window, and select Properties to display the Process
Properties dialog box.

Process Properties I

General I:Iptiu:unsl Configuration options Startup opticns | Readback Dptinnsl

Property Hame Value
Start-Up Clock EMHH vI
Enabile Internal Done Pipe |
Done (Output Events) Default (4)
Enable Outputs (Output Events) Defautt (5
Release SetReset (Cutput Everts) Default (8] |DeFauIt: Default (4
Releaze Write Enable (Cutput Events) Default (6]
Releaze DLL (Output Everts) Defaut (Movait)
Drive Done Pin High |

()4 I Cancel | Ciefault | Help

Figure 1-10 Setting Process Properties

b) Select the Startup Options tab. Change the Startup Clock to
JTAG Clock.

8. Implement the design by double-clicking Implement Design in
the Processes Window.

Configuring the Hello World Design

Once the Hello World design is implemented, you can download it to
the device.

1. Open the Xilinx iMPACT tool by double-clicking Configure
Device (iIMPACT) under Generate Programming File in the
Project Navigator.

2. Ifthe Boundary Scan chain is detected, proceed to the next step. If
not, add devices to the chain from within iMPACT by selecting:

Edit - Add Devi ce

20 Xilinx Development System

MDK Tutorial

3. Browse to the device’s BSDL file. Repeat for as many devices as
there are in the chain.

4. Right-click on the target device and select Program to program
the device.

Debugging the Hello World Design

Now that the target device is programmed with the Hello World
design, you can interface to the board through the JTAG_UART
peripheral.

The MicroBlaze Development Tools include a GNU software
debugger. This debugger (mb-gdb) supports two debug targets: a
cycle-accurate Instruction Set Simulator (I1SS) or a hardware board.

The Xilinx Microprocessor Debug (XMD) engine provides a unified
interface between the debugger and the debug targets. XMD must be
run in conjunction with the debugger and provides communication
with the target hardware in hardware debugging (it appears as a
shell window running in the background.) If the hardware board is
your debug target, a debug stub (XMDstub) must be running on the
target board. This stub should be already running on the target board
because the XMDstub program option was set in XSI.

Software Debugging Using the Cycle Accurate ISS

Assuming that the previous steps were run successfully and the
Hello World code was compiled using the —g option, hardware
debugging is ready to be set up.

1. Verify that the Hello World code was compiled with the —g
option by checking the xflow.log file generated by XSl earlier.
Examine the line that contains the mb-gcc command. It should
indicate that the -g option was specified when compiling the
source. If not, go back to the Project Mode section of this tutorial
and change the Project Mode to XMDstub, and then rerun the
entire software flow.

2. Open a Xygwin shell by selecting:
Programs — Xilinx McroBlaze 2.2 - Xygw n Shell

MicroBlaze Development Kit Tutorial 21

MicroBlaze Development Kit Tutorial

3. Run XMD using a simulator debug target as shown in the
following example:

xnd -t sim-u gdb
M croBl aze XMD Engi ne
Usi ng Si mul at or
Use the following comand in GDB to connect:
target renote host_nane: 1234
4. From the Windows Start menu, open the debugger by selecting:

Programs — Xilinx McroBlaze 2.2 - McroBl aze
GNU Debugger

5. In mb-gdb, load the compiled source code
(system.out.executable) for debugging by selecting:

File - Open

The compiled source is located in the code directory within the
Hello World directory.

6. From the Run menu, select Connect to Target in the mb-gdb
window.

7. Inthe Target Selection dialog box, select the following:
Tar get : Renot e/ TCP
Host nane: | ocal host
Port: 1234

You can now use the mb-gdb interface to debug your code
running on a remote hardware target. The XMD console reports
the status on the connection of the debugger and XMDstub.
Verify that communication is established.

8. You can execute the program by single-stepping (Control -
Step) or executing the entire program (Control — Continue). The
STDOUT from your program appears in the XMD console.

Note See the Debug Tool Chain section in the MicroBlaze Software
Reference Guide for more information on using the debugger.

22 Xilinx Development System

MDK Tutorial

Hardware Target Debugging

Assuming that the previous steps in the Hello World tutorial were
run successfully and the XMDstub program is running on your target
hardware, hardware debugging is ready to be set up.

1. Verify that the Hello World design was created in XMDstub
mode by checking the xflow.log file generated by XSI earlier.
Examine the mode settings for Library Generator and Platform
Generator. It should indicate that the XMDstub mode was
specified. If not, go back to the Project Mode section of this
tutorial and change the Project Mode to XMDstub, and then
rerun the entire flow.

2. Open a Xygwin shell by selecting:
Programs - Xilinx McroBlaze 2.2 - Xygw n Shell

3. Run XMD using a hardware debug target as shown in the
following example:

xmd -t hw -j 2 -u gdb
M croBl aze XMD Engi ne
Usi ng Har dware board debuggi ng t hrough XMD stub
Connecting to XMD stub at baud rate: 19200 bps
XMD stub initialized. Version No: 1
Use the following comand in GDB to connect:
target renote host_nane: 1234

4. From the Windows Start menu, open the debugger by selecting:

Programs — Xilinx McroBlaze 2.2 - McroBl aze
GNU Debugger

5. Inmb-gdb, load the compiled source code (system.out.xmdstub)
for debugging by selecting:

File - Open

The compiled source is located in the code directory within the
Hello World directory.

MicroBlaze Development Kit Tutorial 23

MicroBlaze Development Kit Tutorial

6. From the Run menu, select Connect to Target in the mb-gdb
window.

7. Inthe Target Selection dialog box, select the following:
Tar get : Renot e/ TCP
Host name: | ocal host
Port: 1234

You can now use the mb-gdb interface to debug your code
running on a remote hardware target. The XMD console reports
the status on the connection of the debugger and XMDstub.
Verify that communication is established.

8. Execute the program either by single stepping (Control > Step) or
execute the entire program (Control > continue). You should see
the STDOUT from your program appear in the XMD console.

Note See the Debug Tool Chain section in the MicroBlaze Software
Reference Guide for more information on using the debugger.

Simulating the Hello World MicroBlaze System

24

This section describes the steps necessary to complete both functional
and timing simulation using the ModelTech ModelSim simulator.
Other simulators are supported, however, the .do script created by
the Platform Generator is only supported by ModelSim.

Because the Hello World example communicates via JTAG ports that
cannot be simulated, the ASCII Hello World characters are not visible
in simulation. However, the instruction executable is visible.

Note For more information on using ModelSim, see the ModelSim
section in the ISE 4.1 tutorial available online at:

ftp://ftp.xilinx.com/pub/documentation/ise4_tutorials/ise4tut.pdf

Functional Simulation of the Hello World Design

The following steps describe how to perform a functional simulation
of the Hello World design:

1. Before performing a simulation, run both the Library Generator
and the mb-gcc compiler in executable mode. Go back to the
“Setting the Hello World XSI Project Mode” section and select the

Xilinx Development System

http://support.xilinx.com
ftp://ftp.xilinx.com/pub/documentation/ise4_tutorials/ise4tut.pdf

MDK Tutori

al

Executable mode. Run both Library Generator and the mb-gcc
compiler from within XSl again.

2. Run Platform Generator command line from within the Hello
World project directory as follows:

pl at gen -node executable -a spartan2 —flat —sim 1 -nss system nss

system mhs

Platform Generator creates the following files when run with the
-sim 1 option and places them in the $SMICROBLAZE_PROJECT/
simulation directory.

¢

¢

¢

platgen -mode executable -sim 1 system.mhs
ModelSim .do file (system.do)
Top-level (system.vhd) HDL file

Memory (local_memory.vhd) HDL file (if not run in —flat
mode)

Simulation models for any peripherals used (if not run in —
flat mode)

Compiling the Hello World Design in ModelSim

To compile your design in ModelSim, perform the following steps:

1. Open ModelSim.

2. At the ModelSim command prompt, go to the Hello World
simulation directory.

3. At the ModelSim command prompt, enter:

do system do

The script runs and the necessary libraries are compiled. HDL
files from the SMICROBLAZE/hw directory are compiled into
the simulation directory.

MicroBlaze Development Kit Tutorial

25

MicroBlaze Development Kit Tutorial

The following table provides a list of the libraries typically compiled.
Table 1-1 Simulation Libraries

Library

Description

common

Components used in peripherals and in the MicroBlaze core
(for example, pselect, or_gate, and so on)

microblaze x

Simulation model for the MicroBlaze core (x is a number from
1 to 6 that corresponds to the version of the MicroBlaze core
that is used)

opb_v20

On-chip Peripheral Bus component

work

Contains the compiled top-level and memory files

26

Note Additionally, a library for any custom peripherals is created.

Running the Simulation
Follow these steps to simulate your design:
1. Atthe command prompt, enter:

vsSi m system

In this case, design_name is system.

Note If a test bench has been created, you must load it at this
point.

2. At the very minimum, you can exercise the Hello World system
using clock and reset stimuli. At the ModelSim command
prompt, enter:

force opb_clk 0 Ons, 1 50ns -r 100ns
force sys_reset 0 Ons, 1 300ns, O 1lus

Note 50 ns represents the active high portion of the clock
waveform, and 100 ns is the period of the clock.

3. Display the windows, add signals to the wave, and start the

simulation. At the ModelSim command prompt, enter:
vi ew wave structure signals
add wave *

run 5 us

Xilinx Development System

MDK Tutorial

To speed up simulation iterations, you do not need to run the .do file
repeatedly. If only the C program has changed, then you can simply
recompile the top-level and memory files (peripherals and processor
core are unchanged). You can extract the necessary commands from
the .do file and run the simulation from the command line.

Timing Simulation

To perform a timing simulation, your design must first be
implemented using the Xilinx ISE tools. The flow is the same as for
any Xilinx design and is described in the online software manuals
accessible at:

http://support.xilinx.com

Potential Pitfalls

Due to system differences, you may encounter errors may occur
while performing this tutorial. Refer to the following list of problems
and solutions to help you resolve any errors:

Problem
When running XM from within XSI, the following error occurs:

"the systemc file is not found in the code directory"

Solution

Make sure source code is the Zcode directory.

Problem
When running XMD, the following error occurs:

C\>xmd -t hw-j 2 -u gdb -V

M croBl aze XMD Engi ne

Usi ng Har dware board debuggi ng t hrough XMD stub

Aut oDet ecting cable. Please wait.

Connecting to cable (USB Port).

Cabl e connection fail ed.

Connecting to cable (Parallel Port - LPT1).
Driver Version = 503.

Cabl e connection fail ed.

MicroBlaze Development Kit Tutorial 27

http://support.xilinx.com

MicroBlaze Development Kit Tutorial

Connecting to cable (Parall el

Driver Version = 503.
Cabl e connection fail ed.

Connecting to cable (Parall el

Driver Version = 503.
Cabl e connection fail ed.

Solution
Make sure iMPACT is closed while running XMD.

Problem

Port - LPT2).

Port - LPT3).

While constructing platform, the following errors occur:

Checki ng address space for nenory peripherals ..

ERROR: address space of Inb_bramO i needs to be of
a fixed size!

Platformbuild failed

ERROR: Xfl ow — Program pl atgen returned error code
255. Aborting flow execution...

Solution

A larger memory space is needed for Virtex2 devices; small space is
not supported in Platform Generator. You must increase the
C_LM_HIGHADDR value in the MHS file to 0x00001fff.

Revision History
Table 1-2 Revision History

Date Version Revision
10/25/01 19 Initial MDK tutorial. Covered C2bits
1/21/02 2.1 Updated MDK tutorial with 2.1 infor-
mation
2/15/02 211 Made changes to Make section, Plat-
form Generator
4/02 2.2 Updated for MDK 2.2. Added informa-

tion on the XSI utility.

28

Xilinx Development System

	MicroBlaze Development Kit Tutorial
	Conventions
	MDK Tutorial
	System Requirements
	MicroBlaze Development Tool Flow Overview
	Defining the Hello World Hardware
	Using the MHS File
	Hello World MHS File

	Defining the Hello World Software
	Using Xilinx Microprocessor Software IDE (XSI) Utility
	Defining the Hello World Design Software
	Peripheral Options

	Setting the Hello World XSI Project Mode
	Building the Hello World Design Drivers and C Libraries
	Running Library Generator in XSI

	Compiling the Hello World Code
	Running GNU Tools in XSI

	Building the Hello World Hardware System using Platform Generator
	Running Platform Generator in XSI

	Implementing the Hello World Design
	Configuring the Hello World Design

	Debugging the Hello World Design
	Software Debugging Using the Cycle Accurate ISS
	Hardware Target Debugging

	Simulating the Hello World MicroBlaze System
	Functional Simulation of the Hello World Design
	Compiling the Hello World Design in ModelSim
	Running the Simulation

	Timing Simulation

	Potential Pitfalls
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution

	Revision History

